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I will give a review of the paper by me with this title from 2010 in

ASTIN Bulletin 40 (1), 271–279. Please interrupt me with questions

at any time!

The following are my main conclusions.

� The concept ODP = ’Overdispersed Poisson’, applied to claim num-

bers, is unnecessary. It cannot mean anything else than either Mixed

Poisson or Compound Poisson. To speak of ’Overdispersed Poisson’

is to invite confusion as to whether you mean Mixed or Compound

Poisson. These are two different things.
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•Mixed Poisson: A variable X is Poisson(λ) conditional on a ran-

dom variable λ. Then X is Mixed Poisson distributed.

• Compound Poisson: If X =
∑N

i=1 Yi, with N Poisson and Yi

independent, identically distributed and independent ofN , thenX

is Compound Poisson distributed. If Yi is a positive integer-valued

random variable, the distribution is called Generalized Poisson.

� The χ2-based Pearson φ-estimate (φ is defined next page) is un-

suitable for GLM log link claim frequency analysis, provided we can

identify claims in a Generalized Poisson process occurring at the

same time as belonging together. If such identification is possible,

we can count these claims as one and add their amounts to one

amount. Then we retrieve the pure Poisson process with φ = 1.
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The model

In GLM log link theory for claim frequency, the ODP (Overdispersed

Poisson) model is used. In this theory tariff cells u are combinations

of categorical covariates, called arguments. Let Nu be the number of

claims occurring in tariff cell u during some period of time. The mean

and variance of Nu depend on an exposure eu, namely

A. E[Nu] = νueu

B. Var[Nu] = φνueu

Here νu, called claim frequency, is multiplicative in the arguments.

That is, νu is a product of a base constant and a factor for each argu-
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ment. The number φ ≥ 1 is an unknown constant called the dispersion

parameter. The same number applies for all u and for any time period

regardless of length. This means that Var[N ] = φE[N ] for any claim

number N . For pure Poisson φ = 1, while the case φ > 1 is denoted

overdispersion.

Three basic assumptions are made in this GLM theory, namely

1) Independence between insurance policies

2) Independence between disjoint time intervals (independent incre-

ments)

3) Exposure homogeneity
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These assumptions imply the linear dependence of variance on exposure

inB above. Without the independent increments propertyB is hard to

justify. Time heterogeneity can be brought back to time homogeneity

by the concept of operational time. It is just that the assumption 3) is

convenient for avoiding unnecessarily complicated notation.

The literature suggests the χ2-based Pearson φ-estimate, which we

denote φ̂. Let

n = number of tariff cells

r = n:o of free parameters = 1+
∑

[(n:o of classes per argument) - 1]

arguments

ν̂u = estimate of the claim frequency νu in the GLM Poisson log link
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model.

The number of degrees of freedom is n− r. It holds

φ̂ = (n− r)−1
n

∑

u=1

eu

(

Nu

eu
− ν̂u

)2
/ν̂u

Now that you have seen the formula, please forget it! An insurance

company that has a minimal check on its claims will not need it, as I

have explained. Just set φ = 1.

I showed in my paper that the Overdispersed Poisson model, as

stated above, is the same as Compound Poisson. The Generalized Pois-

son model is a special case of Compound Poisson. But on Wikipedia I
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have seen the definition of Overdispersed Poisson as being the same as

Mixed Poisson – probably written by someone who was as confused as

I was, when I started to investigate the matter.

Now for Compound Poisson we have φ > 1, but in tariff analysis

it is not interesting to state the problem in terms of the parameter φ.

Besides, you can estimate it better than with the Pearson φ-estimate.

Why φ̂ and why the concept Overdispersed Poisson?

I think we can attribute it to

McCullagh, P. and Nelder, J. A. (1989), Generalized linear

models, Second Edition,
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and to

Renshaw, A. E. (1994), Modelling the claims process in the presence

of covariates, ASTIN Bulletin 24(2), 265–285.

Renshaw suggested this mechanism to generate Overdispersed Pois-

son: Claims are generated by processes that are Poisson, conditional on

random independent claim frequencies λu. InA andB above we would

then have νu = E[λu]. But I could show that Renshaw’s calculations

were ambiguious. (I originally wrote that they were in errror, but a ref-

eree thought that was too critical.) The ambiguity gives rise to the ap-

parent paradox that random claim arrival rates generate ODP processes

with φ > 1 having the independent increments property, while time-
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homogeneous unit-step jump processes with independent increments

are pure Poisson. This you can read in elementary text books on

stochastic processes. In straightening out the ambiguity I could show

that the asymptotic theory for confidence intervals in the GLM ODP

log link theory cannot be applied to the random intensities case. This

theory presupposes that Var[Nu/eu] = φνu/eu → 0 as eu → ∞. But

this is not so with random intensities.

I have shown the Overdispersed Poisson concept to be at best super-

fluous and at worst confusing. Still you can see it used in articles, as if

the authors have not read or understood my article.
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Why the Poisson process as model for claim numbers?

In claim frequency analysis of mass consumer insurance one can apply

a general limit theorem for superpositions (sums) of point processes by

Grigelionis, B. (1963), On the convergence of sums of random step

processes to a Poisson process, Probability Theory and its Applica-

tions, 8(2), 177–182.

The theorem states that under weak conditions the superposition of

many independent unit-step claim occurrence processes, each one con-

tributing a small part to the total, is approximately Poisson. This holds

even for random intensities. For instance, when analyzing a portfolio of

60,000 customers with variances of the same order of magnitude, the in-
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troduction of 60,000 random independent intensities for conditional

Poisson processes is an unnecessary complication. For practical pur-

poses, the pure Poisson assumption will give the same results. You can

also read Appendix 8 in Rappmane.doc on the Rapp site. This essay

cannot be published, since I have no new results.

Macroscopic fluctuations

Observed claim frequencies are often found to fluctuate more from year

to year than what follows from the Poisson assumption. This holds also

for mass consumer insurance. This is due to macroscopic variables (e. g.

crime waves, business cycles, the weather) affecting large parts of the



12

portfolio in the same way. Here the assumption 1) of independence

between policies does not hold. So, for analyzing collective claim fre-

quencies in mass consumer insurance, the model of random independent

claim frequencies gives no help.

For analyzing price relativities, my 30-year experience with practical

pricing is that it is mostly best to condition with respect to these

macroscopic variables.

So we retrieve the Poisson process (although time-heterogeneous).

It is seldom feasible to model how the effects of the macroscopics differ

between tariff cells. Relying on e. g. theft expert judgments is better

than augmenting the mathematical model.
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New dispersion parameter estimate in the Tweedie model

My article concludes with a new dispersion parameter estimate in the

GLM Tweedie model for risk premium, and a comparison by simula-

tions between it and the Pearson estimate. When the exponent p > 1

in the Tweedie model, my new estimate is better, if there are suffi-

ciently many claims in each tariff cell. Otherwise the Pearson estimate

is better. For p = 1 – the Compound Poisson model – my estimate is

always better. I am not rendering the formula here, because

1. It is not interesting to do tariff analysis in terms of the parameter φ.

2. The Tweedie model for risk premium should not be used.
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The second reason is shown in my article

Rosenlund, S. (2014), Inference in multiplicative pricing, Scandi-

navian Actuarial Journal 2014(8), 690-713.

http://www.tandfonline.com/doi/abs/10.1080/03461238.2012.760885.


