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ABSTRACT. The birth-death process on the non-negative
integers is studied with respect to the first passage time from
n to j with j> n. The associated density £, ; is a sum of j real
exponential terms, Simple direct proofs are given for Keilson’s
(1971) results that f, ,is a convolution of j distinct exponential
densities and that f, ., is a mixture of n-+ 1 exponential densi-
ties, using a result by Ledermann & Reuter (1954). For a
general birth-death queue the passage time analysis yields the
distribution of the LIFO waiting time; conditional on being
positive this is distributed ing to a mi of tial
densities.
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1. Main resuit

Consider the birth-death process N(z) on the state
space of non-negative integers, governed by rates 4,
for transition from state n to state n +1 and u, for
transition from state n to n~1 with 4,>0, n=0,
1,2, . 4, >0, n=1,2,...; and p, =0. Let f, ; be the
density of the first passage time from n to j and
a,., its Laplace transform;

S )= ‘%P(inf{r:r>0, N(t+7)=j}<x|N(t)=n),

on,j(s) = f“ e_szfn,j(x)dx-

Then from Keilson (1965, p. 407) we have, defining
‘7;(5) = "n.n+l(5)’
Gy (5) = A(s +20)?
008 = A+ 2y T ptn 05 1 (N, m=1,2,..;
(¢3]

This relation can be realized from a simple con-
sistency argument, using the strong Markov pro-
perty. It permits us to calculate all o, ; with j>n,
since by the strong Markov property

{ fn.j :fn,nu*fnn,nﬂ*--- *f/—u,
n,i(8) =07()0%41(5) .. 67a(9). 2
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The first step in the inversion of o, ; is to write it
as a rational function. Define the polynomials Py of
degree N

Py(s) =1, Pi(s) =5 + 2o,
Py(s) = (s + g1+ py-1) Py—os) = Ay-atty-1 Py-afs),
N>1. 3)

Confer Keilson (1971, p. 392). We use identical nota-
tion as this author, except that S, ; is here denoted
fu.;» By straightforward induction we obtain

03(8) = A Po(5)/ Pyaa(s), n =0, 1, .... @
Inserting (4) in (2) we get immediately
0 f(8) = Apnis oo Ay Po(8)/Py(5), § > n. )

Keilson (1964) gives a similar expression for o,
eq. (5.13), obtained via the Laplace transform of the
transition probability function of the process. It
does not seem clear of what degrees the polynomials
involved are. A representation of f,; as a finite
sum of exponential terms, eq. (5.14), is further ob-
tained via a spectral representation of the transition
probability function due to Ledermann & Reuter
(1954). The procedure is however much simplified
by a direct application of Lemma 1, p. 328, in
Ledermann & Reuter (1954) to the passage time
problem. We give here a proof of (6) below along the
lines of these authors. Let —0y,, ..., —8y y be the
zeros of Py, ordered so that Re (6y,;) <Re (Oy,2) <
. <Re Oy y).

Proposition. The 0y, , and 0., , are distinct, real and
satisfy

Op1a <01 <Oyire <Oyo <.. <Oy ya<Oynn
< 6IV,N < 9N+1,N+1~ (6)

It then follows from Feller (1971, pp. 438—439) that
Ju-a,n has the exponential mixture form (3.13).



Proof. The statement is equivalent to each of the
following two statements.

The Oy, are distinct and real, and Py.,(—0y,,)+0
and has the same sign as ( —1)". 6

The 0y, are distinct and real, and Py( —0y.1,,) +0
and has the same sign as (—1)". (Cy)

Let us for example show the equivalence between
(6) and (6’). First observe that the coefficient of s™
in P, is 1. If (6) holds, then Py, changes sign at each
of its zeros, so that Py..(—0y,,) changes sign as r
increases one step. Further lim . Py4a(s) = oo im-
plies sgn (Py..( —0y,1)) = — 1. Hence (6°) holds. Con-
versely, if (6”) holds, then Py.,( —6y,,) changes sign as
r increases one step, so that Py, has at least one zero
in each of the N —1 intervals (— 0y ,, —0y,,-.). More-
over sgn (Pya(—0x,1) = —1 and lim; 0 Py4a(s) = o0
implies a zero of Py., to the right of —6y,,. Also,
sgn (Pyua(—0ym)=(- DY and limg, o Pysa(s) =
(-1)"*'. 0o implies a zero to the left of —0y 5.
Hence Py, has N+1 real zeros situated according
to (6).

If the statements are true all 8, are positive, be-
cause otherwise the Laplace transform (4) would be
unbounded for s >0, which is impossible.

Now (67) is true for N =1 since Py(—0,1) = —~ oy
by (3). Assume (6) and hence (6”) for N =i —1. Then
for N=i by (3) Pya(—0;)= —2apPia(=6;,),
which is not zero and has sign as (~1)'***! =(-1)".

Thus (6”) and hence (6) holds for N =i. Q.E.D.
We invert (5) for j>n >0 and obtain
LI N VIR X g
fusy = 3 et P00 o e g o ()

= Pi-6,,)

Some asymptotic relations can be derived. For large
x the first term for r =1 of course preponderates and
similarly we have for the moments

oo Aj1 Pp( =65 D!

o0 .r A
J IS e T ®

(We know that P,(—6;,)>0,since —6;,> —6,,,>

.. > —0,.) Applying Theorem 4 in Feller (1971,
p. 446) and the assertion of Theorem 3, p. 445,
which is valid also for Theorem 4, we further get

Fot) ~ A e XY G —n =1 (x~0). (9

Exact expressions for the moments of f, ; in terms
of 4, and p, can be obtained from (1): Move the
denominator to the left hand side, differentiate in s
and put s =0. This gives a simple recursive relation
for the first moment of f,, 5 ... Further differentiations
give recursive relations for the higher moments. The
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moments of f, ; are then obtained with the aid of

(2). Cf. Keilson (1965). We here give the expecta-
tions (define [ -1 =1)

00 -1 r T
J X ydx= 3 3 Ate whity, j>n.
o k

r=n k=0 fmr— e+l
10)
2. Connection with Keilson’s results
Setting » =0 in (5) we get
0o 4(8) = Ao Ayy((s +0,5) ... (s +6, ), (11)

so that with (6) we see that f, ; is a convolution of j
distinct exponential densities. Thus we have arrived
at the result (4) in Keilson (1971). For j=n+1 it
follows from (6) that each term of (7) is positive
(Feller, 1971, pp. 438-439). This holds only for
j=n+1, since for j>n+1 the degree of P, differs
by more than one from the degree of P,. The result
(11) in Keilson (1971) follows on noting that (7)
holds also for a birth-death process truncated at
K (Ag =0) provided j <K. A downwards transition in
a process N(t) truncated at K is an upwards transi-
tion in the truncated birth-death process N*(¢) =
K - N(¢) with birth rates A} =ug_, and death rates
2% =Ag_,. The coefficients 8, and B, of (11) in Keilson
(1971) will be found by applying the procedure above
to N¥(t) to get fz_y,z ~fro=R.

Our procedure to establish (6) and the relations
(4) and (11) in Keilson (1971) implies thereby is
simple and elementary. Keilson, on the other hand,
obtained his result (11) by deep methods, using the
reversibility in time of the birth-death process and
a spectral representation of the transition proba-
bility function pee(?).

3. Queuing applications

The busy period and other passage times in birth—-
death queuing models have recently attracted some
attention in the literature, see Conolly (1974), Natvig
(19754, c) and Rosenlund (1973 and 1975). For the
case of constant transition rates, 4,=p(n>0) and
I, =AMn>1), the polynomials Py may be expressed
in closed forms; put u=w=1 in (11), (12) and (13)
of Rosenlund (1975). For an m-server birth-death
queue such that a customer who joins the system
stays there until service completion (i.e. no reneging
or push-out), the passage time analysis yields the
LIFO waiting time distribution; a customer who
finds k customers before him in the system at arrival
(k >m) and does not balk has, under reverse order
service, to wait during a first passage time from
k+1 to k. Let &, be the balking probability for a
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customer finding n customers before him and let A
be the Poisson arrival intensity; then 4, =A(1 —§,)
for the process N(z) =number of customers in the
system at £. Now assume a finite waiting room size
N, i.e. Ay, y=0, while 2,>0 for 0<n<m+ N and
1, >0 for 1<n<m+ N. Let =, be the steady-state
probability that a non-balking customer finds & cus-
tomers before him at arrival. From Natvig (19755,
€q. (2.7)) we have

3
me=alldur®, k=0,..,m+N-1. 12
=1

The density of the waiting time W, conditional on
W >0, is then

wix) = %P(Wsﬂ w>0)

m+N-1

-2

k=m

(Tt + e At n-D) " Srar, (0. (13)

Now frirx =fm+N—k-1.m+N—ks Where f:l is the
density of a passage time from z to jin N*(t) =
m+N—N(t). Hence fi., is a mixture of m+ N -k
exponential densities, and so w is a mixture of
N(N +1)/2 exponential densities.

The expression (13) has to be supplemented with
the steady-state probabilities for immediate service
commencement, waiting and loss, respectively, in
order to characterize the fate of a customer. Put

m+N T
b= 2 U-o_l h_;,ufl.
r=0 =1
Then
P (immediate service commencement)
m-1r
=67 3 [T auis
T=0 f=l
m+N-1 7
PW>0)=b" 3 ITaw
re=m i=1
m+N-1 7
Ploss)=1-b"" 3 T api. 14)
=0 {i=1

The losses include customers who find the waiting
room occupied as well as customers who balk des-
pite available waiting place. For the steady-state
distribution of an arriving customer, see e.g. Natvig
(1975b), eq. (2.24) and lines 7 and 8 on p. 590.

The LIFO waiting time in the queue M/M/m/N,
i.e. 4, =40 <n<m+ N), pu, = f min (m, n), has been
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studied by Kiihn (1971) and Rosenlund (1975), with
separate methods and partly separate results. Writing
the latter article we were not aware of the priority
of Kiihn, which is hereby acknowledged.

Our thanks are due to the referee, who suggested
that the passage time analysis of LIFO waiting time
used in Rosenlund (1975) be employed for a general
birth-death queue and furnished the n-distribution.
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