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ABSTRACT

The waiting time in the random order service G/M/m queue is studied.
For the Laplace transform we obtain a simpler representation than previously
available. For the moments, an explicit recursive algorithm is given and car-
ried out numerically for some cases. This gives rise to the conjecture that the
waiting-time distribution can be approximated by the one for M/M/m after a
suitable change of scale.

1. INTRODUCTION

Consider the random order service G/ M/m queue with interarrival time distribution func-
tion F(F(0) = 0) and service time density we™®’. Let G be the distribution function of the
waiting time W (in the stationary case) conditional on its being positive, i.e.,
GW)=PW << t|W>0. We shall study G through the Laplace transform

G(s) = fo e™%dG (1) and the moments u, = fowr”dG(r) of G.

The model has been investigated by LeGall [3] and Takdcs [6], who give the characteristic
function and Laplace transform, respectively, of W. Carter and Cooper [1] and Cooper [2]
study G directly and give recursive algorithms for its computation. Carter and Cooper [1] men-
tion that their analysis was motivated by a study of the Bell System’s No. 101 Electronic
Switching System.

By a substitution of function in Takdcs’ basic differential Eq. (27) we are here able to
obtain a simpler closed expression for the Laplace transform than that following from Takdcs’
Eq. (23). Also we give a simpler recursive algorithm for the moments than the one indicated
by Takdcs in his Eq. (32)-(36). The algorithm is carried out numerically for some special cases.
The study of moments gives rise to some conjectures on approximations for G.

The G/M/m/N model has been studied by Rosenlund ([5] § 10). By relations (20),
(24), (27), (28) and (29) the Laplace transform of W can for N<eo be calculated without need
for numerical integration in the usual D/M/m and Ex/M/m cases, so that it might be prefer-
able to approximate the present infinite waiting room with a finite waiting room. Our notation
is

B=mu,
By = [ emvar o

w(s) = F(Bs),
207
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p=@Bf 1dF(0)! (assumed < 1),

a(s) = root z with smallest absolute value of the equation z = (s + 1 — z),
= a(0),

A = as given by (11) in Takdcs [6] (cited by Cooper ([2], p. 186)),

W, = waiting time of i th customer,

o —aw .
Vix)= Y E(e 8%\ i th customer finds m + k other customers at arrival xk
k=0

M,(x) = ¥ E((BW)"|m + k customers before i th arrival) x*,
k=0

W = random variable with the limiting distribution for W, as i — oo,
The notation is adapted to obtain functions which are invariant under changes of time scale.

Let P, be an arriving customer’s distribution for the number of other customers in the
system in the stationary (long-run) case. From Takdcs [6] Eq. (9), we quote

P, = Ao* "k > m.

Hence we can derive the relations

6)) PWE)=1-4(1-w) '+ 40 - 0)'G(),
) G(s) = (1 — ) Vyp(),

3) E(e") =1 -4 A-w) '+ 40-0)16(),
) = 1- ) "M, (),

(5) EWD =41~ o) 'u,.

For m =1, it holds that 4 = 0 (1 — ).
2. THE LAPLACE TRANSFORM

From Takécs [6] Eq. (27), we get
-G +1=x)V' (x) + V,(x) =
(6)
A-ypG+1-xNA=x)Us+1-x)", 0<x < 1.

The relation between Takdcs’ notation and ours is F{(s) = ¢(s), a(s) = y(8s) and
V,(x) = ®(Bs,x). Equation (6) also follows from Eq. (24) in Rosenlund [5], which was
derived by different methods and is in a different form than Eq. (26) in Takdcs [6]. Before its
solution we make the substitution

Ux)=V,(x)— (s +1-x)"L
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Then from Eq. (6)
Ui+ U/ (x—ygls+1-x) =50 —-x)"Ws+1-x)2

Now take s > 0 real and let [ stand for either [0,a(s)) or (a(s),1). With z an arbitrary fixed
point in I we have for xin /

U (x) exp ILZ m-‘-ldi—t)—t“ =s(-x)"s+1-x)?

z dt
ol sy

4
dx

whence
z dt
U’(X)expl fx Yl +1~1¢)— t]
Q)
X _ _ z dt
= J; s(1—u) (s +1— u)Zexp [fu m]du + G,

Setting x = z it is seen that the constant of integration C,, = U,(z). Let now x — «(s). Then
Ul +1—x)—x~ (as) —x)(A +¢'(s + 1 — a(s)), so that the left side of Eq. (7) tends
to 0. Hence the first term of the right side is —U,(z) for x = a(s). Put Q(s) = U,(w)/s.
Then

® 0() = j::s) =07 +1-wexp [f"m P(s + ldt— 1)~ ‘]du'

The exp factor is < 1. A comparison with Eq. (23) in Takdcs [6] reveals the relative simplicity
of Eq. (8). From Eq. (2) we now get an expression for G (s). Making substitutions of variable
to get real intervals of integration also for complex s we obtain, letting

£0)=1-a(s) — (w— a(s))y,

® 0 = @—a®) [ £ + 460
1 (0 — a(s))dt
exe {f, VG + ) + 01|

The resulting expression for G'(s) holds also for complex s with Re(s) > 0, and we can use
Lévy’s inversion formula for characteristic functions, which for distribution functions F such
that F(¢) = 0 for t+ < 0 can be written

(10) F( =2 [7 sin(tx)x~! Re(F (i x)) dx,
T Jo

if t 2 01is a point of continuity for F. The integral is defined at least in the improper Riemann
sense. Inverting G (s) we note that (8 — Bw)/(s + B — Bw) is the Laplace transform of the
exponential distribution with mean 1/(8 — Bw). This is the distribution of waiting time (condi-
tional on its being positive) in the "first come, first served” G/M/m queue. See Eq. (14) in
Takdcs [6]. We can now state

THEOREM 1: With Q given by Eq. (8) or (9) it holds that
G(s) = (B — Bw)/(s + B — Bw) + (1 — @) (s/B)Q(s/B)
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and

G(t) =1 = g~ -0 %(1 —vw) J;wlm(Q(ix)) sin (8¢ x)dx.
From Eq. (7) we get

]

x dt
exp { fu m]du.

This relation can be used for calculating mean wait when the arriving customer’s queue length
distribution is not the stationary one. Applying a Tauberian result we can obtain
G'(0) = lim sG (s) from Theorem 1. By dominated convergence in Eq. (8) we obtain

§—00

an M, (x) = —%[Vs(x)] =a-07-fTa-w?
s=0

12) G'(0) = B ~ Bw)w log(1/(1 — w)).

3. THE MOMENTS

Takécs [6] indicates by his Eqs. (32)-(36) a method of calculating the moments E(W").
We shall here develop a simple and explicit recursive algorithm for this purpose. It is easily
shown that

(13) M,(x) = (~1)" 2 [Vs(x)] :
ds s=0

Let us differentiate both sides of Eq. (6) n times in s and r times in x, putting s = 0 and x = .
Simplifying the resulting equation by substituting

Co= 0,
6=0-o)"' =1y -w)/rforr>1,
B,, = (1 — &)™ 1M (w)/(n!r),

we obtain the following formula, which might be considered the most useful result of this note:

n+r+1 n r
B,, =+ r—rc)! , -rB,,+Y ¥
i=1 k=0
(14)
n—i+r—k i+k+1
n—i Coi 4 r—ic | (K + D Byyyq — k ,n21,r20

The terms with B,, on the right side cancel out, and the term with B,,,; vanishes, since
co= 0. Hence Eq. (14) is a recursion. In programming, no regard need be given to the term
—rc,B,, provided all data registers for the B:s are zero initially. To get By o, By g, ..., B, we
calculate Eq. (14) forr =0, ..., p —nand n =1, ..., p. We get successively
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Bio Byy .. Bipy By,
Bz,o B2.l BZ,p—2n

B, 10 By y,1,

B,
We need only ¢y, ..., ¢,—1- For r > 0 the interest of B,, is only as a stepping stone on the
way to By g, ..., B, o From Eq. (4) then

THEOREM 2: The moments of G are u, = (8 — Bw)~"n!B,,, where B, are obtained
recursively from Eq. (14).

Note that the factor (83 — Bw)™"n! is the nth moment of the conditional waiting time distribu-
tion for first come, first served queue mentioned in connection with Theorem 1. Hence B,
has independent interest as a comparison between disciplines of service with respect to
moments. .

The recursion (14) is well suited for numerical computation (see Table 1) but to throw
more light on the mathematical form of u, we go further. Define
a 0= 1,

e=1+j— jey,

n+r—1 inGnntr—)
- min(n,n+r—
an,= II ¢ 7
J=1
Dfl,’ = a’l,’Bﬂ,f'

Substitution in Eq. (14) gives

n+r+1

noor
-1 -1
r e =~ a,,— ree, Dn,r + 2 Z

i=1 k=0

Dn,r =

as)
i+k+1

k

n—i+r—k . 4
(k+Deay, a1 D k1 —

n—i ]cn-i+r—k

-1
e a,,‘,]‘

As before, the terms with D,, and D, ., on the right side cancel out and vanish, respectively.
For all other terms the coefficient e,"a,,’,ai,‘kﬁ,l can be seen to be a polynomial in e, ..., €,,,_,
and hence in c¢;. Thus D,, is a polynomial in ¢y, ..., Cpyry.

n—1 X
THEOREM 3: It holds that u, = (8 ~ Bw)™"n!D, o/ [T (1 + j — je))"™/, where D, is
j=1
a polynomial in ¢,, ..., ¢,_; obtained recursively from Eq. (15).
For the first three moments we obtain
Dl,O = 1

(16) Dzy0= 2
D3 o= cy(6 - ¢ + 12 - 8¢, + 3012 - c.
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Takdcs [6] gave the first and the second moment. For n > 4 the closed expressions for D,
are complicated, and the recursion (14) is preferable for obtaining numerical results.

Let us apply the results to the cases of constant and Erlang-distributed interarrival times.
For the deterministic case, where F(s)=e Tandp=1/8T, we define w by o=
exp{(@ — 1)/p), 0 < w < 1. It holds that

an ¢ = w(l—w) ' (—logl@))/r!, r > 1.

For the gamma (Erlang) case, where FGs)=0/G+M DX (K > 0)andp =\/BK, © is
defined by o = (1+(1—w)/pK)"X, 0 < @ < 1. Here

K—1+r
(18) ¢ = w(l-0) 1 (1-05" ,

, I 2

In particular for the M/M/m queue (K=1) we have w=p= A/B and
¢, = 1—w)'o(r > 1). It follows that for this case

19) pi=12 -2+ )2 - 0)2

Table 1 gives B, o, By, ..., By, for F(s) equal to e, (A/(s +A))% and A/(s + 1), ie,
for the queues D/M/m, E,/ M/m, and M/M/m, and for the traffic intensities p = 0.5, 0.7, and
0.9. We used the calculator TI 59 and run time was 3.75 h for each case, in all 33.75 h.

TABLE 1 — Values of B, o for1 < n < 10

i D/Mim EJM/m M/M/m

_P ( 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 09
) 203188 | .466996 | .806900 | .301931 552912 | .843335 | .5 N 9
1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2 1.25500 1.50053 1.81251 1.28835 1.51643 1.81482 1.33333 1.53846 1.81818
3 1.97820 | 3.06019 | 4.76979 | 2.07762 | 3.11494 | 4.77927 | 2.22222 | 3.19527 4.79339
4 3.68889 | 7.69510 16.2385 3.95696 | 7.89274 16.2857 | 4.37037 | 8.18958 16.3561
5 7.75822 | 22.5330 | 67.1263 | 8.51405 | 23.3153 | 67.3971 9.72840 | 24.5066 | 67.8014
6 17.8677 74.1797 | 323.177 20.1019 | 77.5100 | 325.506 23.8214 | 82.6458 | 328.092
7 44.2026 | 268.155 1773.23 51.0705 | 283.195 1785.31 62.9102 306.694 1803.40
8 115.889 1046.83 10810.9 137.706 | 1118.21 10902.1 176.680 | 1231.30 | 11038.9
9 318.837 | 4359.09 | 72282.5 390.125 | 4712.69 | 73019.7 5§22.226 | 5281.22 74127.5
10 | 913.672 19180.3 | 523851 1152.41 20999.0 | 530185 1611.84 | 23968.8 | 539726

The table illustrates the heavy tail of G in comparison with that of the exponential distribution
with mean 1/(8 — Bw), particularly under heavy traffic.

Holding F fixed up to a scale factor and letting p — 1 we have lim ¢, = land limc, =0
for r # 1. This gives in Eq. (14)

20) lim1 B,,=(n+n)Yr,
o—

so that by Theorem 2

(1) 1im1 B -Bw)u, = ()
o —

Now (n!)2= E((XY)"), where X and Y are independent with density e™*. We cannot, how-
ever, deduce that lim G{(t/(8 — Bw)) = P(XY € 1) = _I; e?(1—e™"?) dy since the moment
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sequence (n!)? does not determine the corresponding distribution uniquely. Neither does it
seem possible to establish such a convergence from the Laplace transform G.

Even for moderately heavy traffic Table 1 reveals that we can write approximately
B0 = (n!) * for some a(0 < a < 1) determined by the parameters, so that

(22) m,= (B —=Baw) (n)lte,
We can determine a to make Eq. (22) exact for n = 3, i.e.,
(23) a = log(B; ¢)/log(6),

where, by Eq. (16) and Theorem 3,
Byog=1lcy(6—¢c)) + 12— 8c; + 3¢ — ¢} 12— )73 = 2¢p) .

The approximation is not so good for light traffic.

It is further seen from Table 1 that B, , depends heavily on the traffic intensity p but not
much, given p, on the form of the interarrival distribution F, although w , depends strongly on
F through  in the factor (8 — Bw)™". This suggests that G can be approximated by the distri-
bution for M/M/m after a change of scale. More precisely, let G, gz denote G when
F(t) = 1 — e™'; then our results would indicate the approximation

(24) G() = G, (t(8 — Bw)/(1 — p))

for p not too small. The indeterminancy of the moment problem still remains, though.
4. THE DISTRIBUTION FUNCTION G FOR M/M/m AND D/M/m

For the queues M/M/m and D/M/m, special formulas give more useful results for the
calculation of G than the general inversion formula of Theorem 1. For M/M/m the result of
Pollaczek [4] seems to be the most convenient. It can be written

Gy () =1-2(1=p)
(25).
exp Vp sin x
fﬂ 1— p cos x
0 (1+p — 2vp cos x)2(1 + ™ <t %)

For D/M/m the most convenient algorithm seems to be the so-called additional conditioning
variable method due to P. J. Burke, described in Cooper [2], pp 229-230. In this case the con-
ditioning variable, the number of arriving customers in (0,¢), is deterministic. The algorithm is
a recursive scheme, which for D/M/m can be reformulated in the following way. Let

x + 2 arctan cot x — t(1 +p — 2v/p cos x)} sin x dx

H; (1) = P(BW, > k/p + t!m + j customers before ith arrival),

(26)
k=01, ...;0< tSp—l.
Then
@n G =1-U0=w) Y o HgnBt — Bptl/p), t >0,
Jj=0

and H; is determined by the recursion
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Jj+1 r tj+l—r
H, =T _t @
r0(®) ,;{j+1 G+1-n
(28) J+1 j+1— .
=% W)y, S1i>
}Ij.k(t) r-zl j +1 (j +1- f)' e }L,k—l(t)' k = 1’.1 z 0.

ehj20

Forming the power series

H,x)= Y xH,(0),0< x < 1,
Jj=0

we have
(29) G(1) = 1-(1 — @) Higp), 1 - gprp(@).

From Egs. (28) we obtain the recursion

Hy (x) = x7! J;x '@V (1—y)~2dy

30) — —,
Ho(o) = x7 [ e R, (du, k > 1.

This results in
1
(J)) G =1-(-wo [ P u?du0<t<T.
~w
The formula will hold for any arrival distribution Fsuch that F(T — 0) = 0.
For numerical computations it appears that Eq. (31), when applicable, is better than Eqgs.

(27) and (28), while for t > T(8t > p~!) generally Eqs. (27) and (28) are better than Eqgs.
(29) and (30). In Table 2 we study the suggested approximation (24). For each p-value, the

TABLE 2 — Values of G for
D/M/m with approximation (24)

p=05 p =108
Bt G(1) appr. G (1) appr.
0 0 0 0 0

0.25 | 0.1995 | 0.2315 | 0.1353 | 0.1580
0.50 | 0.3591 | 0.3962 | 0.2510 | 0.2744
0.75 | 0.4868 | 0.5169 | 0.3501 | 0.3646
1.0 0.5889 | 0.6077 | 0.4352 | 0.4369
1.25 | 0.6707 | 0.6775 | 0.5084 | 0.4964
1.50 | 0.7371 | 0.7322 | 0.5483 | 0.5464
1.75 | 0.7885 | 0.7756 | 0.5872 | 0.5889
2.0 0.8305 | 0.8106 | 0.6244 | 0.6257
2.5 0.8683 | 0.8624 | 0.6921 | 0.6858
3.0 0.9013 | 0.8981 | 0.7331 | 0.7328
4.0 0.9482 | 0.9413 | 0.8028 | 0.8011
5.0 0.9670 | 0.9647 | 0.8503 | 0.8477
7.0 0.9872 | 0.9859 | 0.9060 | 0.9054
10.0 0.9965 | 0.9958 | 0.9499 | 0.9491
17.0 0.9997 | 0.9996 | 0.9848 | 0.9846
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left column gives G (¢) for D/M/m while the right column gives G, ;(8¢(1 — w)/(1 — p)). At
least for the larger values of the argument the agreement is seen to be good for both traffic
intensities. Since D/M/m might be denoted E../M/m and since the dgreement in moments
was shown to be better between E,/M/m and M/M/m than between D/M/m and M/M/m, the
approximation (24) should be still better for Ex/M/m.
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